Agronomic Uses of Manure that Reduce Environmental Risk

Greg LaBarge, Field Specialist, Agronomic Systems
Glen Arnold, Field Specialist, Manure Management
Ohio State University Extension
Question to answer:

- Do 4R Nutrient Stewardship principals apply to Manure Management?
- Is manure only “insurance” nutrients or a “primary nutrient source” that replace purchased fertilizer?
- Can manure sourced Nitrogen be better utilized and Phosphorus Balanced in a crop rotation?
- What effects to water quality could happen?
How are the 4R’s being adopted into Manure Sourced Nutrients

What are the 4Rs

RIGHT SOURCE
Matches fertilizer type to crop needs.

Primary nutrient source P & K, also N

RIGHT RATE
Matches amount of fertilizer type crop needs.

Rates limited to 2-year (in some situations 3 year) crop rotations P needs

Using technology to monitor and or VRT rate

RIGHT TIME
Makes nutrients available when crops needs them.

Apply in growing cash crop

Apply into established forage/cover crop

Using technology to monitor and or VRT rate

RIGHT PLACE
Keep nutrients where crops can use them.

Use manure application to establish cover crop seeding

Manure Incorporation

Makes economic & environmental sense...
P Losses from Manure vs Fertilizer Applied at Same Rate

Field 1: Liquid dairy manure - 13,000 gallons/A

Field 2: MAP

76 lbs P_2O_5/A

Field 1: Liquid dairy manure - 13,000 gallons/A

Field 2: MAP
Manure Supplied Nutrients Compared to 2-year removal
Corn - 180 bu/ac & Soybeans - 60 bu/acre

<table>
<thead>
<tr>
<th>Nutrient (pounds/ac)</th>
<th>2-Year Grain Removal</th>
<th>Swine*</th>
<th>Dairy*</th>
<th>Poultry*</th>
</tr>
</thead>
<tbody>
<tr>
<td>5500 gallon/ac</td>
<td>13000 gallon/ac</td>
<td>2 ton/ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N 133</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 111</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 104</td>
<td>=</td>
<td>+</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Ca 24</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mg 17</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>S 20</td>
<td>=</td>
<td>=</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>B 0.19</td>
<td>=</td>
<td></td>
<td>-</td>
<td>nd</td>
</tr>
<tr>
<td>Cu 0.07</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>=</td>
</tr>
<tr>
<td>Fe 0.56</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mn 0.14</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Zn 0.32</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>=</td>
</tr>
</tbody>
</table>

* Based on a single operation’s test values. Recommend each operation establish history of manure test results.
In Season Application Utilizes Nitrogen

Corn
N Requirement-190 lbs. Ac
$68.25 @ $0.35 N

Wheat
N Requirement-115 lbs. Ac
$40.25 @ $0.35 N
Sidedressing Manure on Corn - Economic Incentive to Use this Practice

Corn Yield with Sidedress Manure Compared to 28% UAN Check (OARDC NW)

- **6 Year Average +24 Bu/A**

Corn Yield with Sidedress Swine Manure Compared to 28% UAN Check

- **On-Farm in Darke County, OH**
- **6 Year Average +17 Bu/A**

Treatment Costs and Economic Analysis

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cost</th>
<th>Yield Increase</th>
<th>Net Over UAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial Budget Nitrogen Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAN @ $0.35</td>
<td>$75</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Swine (5500 gal)</td>
<td>$55*</td>
<td>$84</td>
<td>$104</td>
</tr>
<tr>
<td>Dairy (13,600) + 70 UAN</td>
<td>$160 ($136* + $24)</td>
<td>$84</td>
<td>-$1</td>
</tr>
</tbody>
</table>

* Cost of application @ $0.01/gallon
North Field Treatment
28% UAN applied on June 5
 – 172 pounds of N per acre
 – 0 pounds per acre P$_2$O$_5$

South Field Treatment
Swine manure on June 1 @ 6000 gallons/acre
 – 172 pounds available N per acre
 – 120 pounds per acre P$_2$O$_5$
Soil Test Results 6/24/2020
20 Days after nutrient application

• Sample Core Depth of 0-12 inch
• Eleven cores composited across the row
• Timing
 • 19 days after manure
 • 23 days after UAN

Results

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Nitrate (PPM)</th>
<th>Ammonium (PPM)</th>
<th>Total N NO₃ + NH₄ (PPM)</th>
<th>P (PPM)</th>
<th>OM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28%</td>
<td>21</td>
<td>15</td>
<td>36</td>
<td>32</td>
<td>3.3</td>
</tr>
<tr>
<td>Manure</td>
<td>32</td>
<td>7</td>
<td>39</td>
<td>38</td>
<td>3.4</td>
</tr>
</tbody>
</table>

STP values of N and P identical after nutrient application
Normalized Difference Red Edge (NDRE) Index of Plant Health

- South field appears healthier common comment by farmers.
- South field corn is planted diagonally to reduce equipment/labor cost recent adaptation.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>NDRE Index</th>
<th>Stand Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>28%</td>
<td>0.60</td>
<td>28,500</td>
</tr>
<tr>
<td>Manure</td>
<td>0.63</td>
<td>31,000</td>
</tr>
</tbody>
</table>
Estimated Yield on 8/26/2020

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Yield Bu/A</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>28%</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Manure</td>
<td>185</td>
<td>+53</td>
</tr>
</tbody>
</table>
Use of Practice/Adoption Barriers to be Overcome

- Application window based on crop growth stage
- Equipment availability
 - Applicators
 - Transport
- Weather Window
- Farmer confidence

* 2019 Weather Hindered Planting and Manure Applications
Manure Compared to Commercial Fertilizer over a Crop Rotation

2016 Soil Test P 53 PPM

2019-September
• Applied Swine Finishing Manure
• Planted to Cereal Rye/Rape Seed

2020-May
• North Field-Corn
• South Field-Soybeans
Swine Manure Applied on 9/15/2019

- **Corn**
 - Rt_Apd_Liq
 - ≤4700
 - 5200 (plus/minus 500)
 - >5700

- **Soybean**
 - Rt_Apd_Liq
 - ≤5800
 - 6300 (plus/minus 500)
 - >6800
Soil Test Results in Spring after Fall Applied Manure

Soil Sample (0-8 inch) Taken 5/6/2020.

<table>
<thead>
<tr>
<th>Soil Test Parameter</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Manure</td>
</tr>
<tr>
<td>pH</td>
<td>5.4</td>
</tr>
<tr>
<td>Organic Matter(%)</td>
<td>4.3</td>
</tr>
<tr>
<td>NO3-N (ppm)</td>
<td>7</td>
</tr>
<tr>
<td>NH4-N (ppm)</td>
<td>4</td>
</tr>
<tr>
<td>P* (ppm)</td>
<td>57</td>
</tr>
<tr>
<td>S* (ppm)</td>
<td>8</td>
</tr>
</tbody>
</table>
Cover Crop Growth on 5/6/2020.

<table>
<thead>
<tr>
<th>Manure Applied</th>
<th>% Ground Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>70 a</td>
</tr>
<tr>
<td>No</td>
<td>42 b</td>
</tr>
<tr>
<td>LSD (0.01)</td>
<td>21</td>
</tr>
<tr>
<td>C.V. %</td>
<td>20</td>
</tr>
</tbody>
</table>

40% Cover 80% Cover
Cover Crop with Manure at 2 Rates

Treatments

- 7,000 and 14,000 gallons per acre applied August 1
- Cover crop species White Mustard

Results:

- tile flow (-35%)
- Nitrates (-74%)
- DRP (-33%)

Note: DRP reductions from CC are not consistent across literature.
Summary

• Farmers knowledge/confidence of using manure as a primary nutrient source for P & K is common.
• Knowledge/confidence to better utilize N as a primary nutrient source increasing.
• Practices of:
 – Cover crop after summer manure application
 – In crop applications to corn and wheat are increasing
• Economics are driving innovation in planting and application equipment improvements.
• All leading to 4R Nutrient Stewardship in use of manure sourced nutrients.
• Water Quality impacts:
 – Manure and fertilizers applied at the same rate have an equal impact
 – Cover crops reduce N losses, for P there is variable results
 – In crop applications of manure reduces overall applied N in environment
Contacts

- Greg LaBarge labarge.1@osu.edu
- Glen Arnold arnold.2@osu.edu